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Abstract. Drones are being increasingly used for infrastructure and 
building inspections. However, significant challenges remain, such as 
the need for human interventions to determine inspection routes. Route-
generation approaches using rule-based algorithms often fail to address 
the complexities of large-scale scenarios, such as inspecting buildings 
across an entire city. In response, this paper proposes a route-generation 
strategy for building inspections using deep reinforcement learning. In 
a game engine, we created a simplified virtual environment comprising 
sixty box-shaped structures representing buildings. This approach 
aimed to elucidate the conditions and design considerations necessary 
for implementing an effective reinforcement-learning model to inspect 
all building façades. Unity's ML-Agents Toolkit was employed for 
reinforcement learning. Drone movements and wall layout were 
mapped onto a 40-cell grid to simplify the environment and facilitate 
model training. After 1.8 billion learning steps, the model enabled 
drones to inspect all designated building surfaces, achieving an average 
flight path of 18,392 m across simulations, which is comparable to the 
route-generation performance of traditional rule-based methods. This 
study demonstrates the potential of reinforcement learning to tackle 
complex tasks, such as citywide building inspections. It serves as a 
pioneering example of agent-based research, highlighting its 
significance in encouraging further studies in this field. 
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1. Introduction 

1.1. SOCIAL CONTEXT  
The infrastructure in Japan is aging rapidly, necessitating regular inspections. 
However, challenges such as shortages of skilled engineers and financial resources 
persist. Additionally, as Japan is prone to earthquakes, quick inspection of buildings 
and infrastructure following disasters is critical. Thus, routine and emergency 
inspections of infrastructure are becoming increasingly necessary. Drone-based 
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inspection has been introduced to address this issue. However, in most cases, human 
operations are required, which pose ongoing challenges relating to safety, cost, and 
efficiency. Drone-based inspection has been introduced as a solution to address this 
issue. However, in many cases, human intervention is still required, which introduces 
persistent challenges in terms of safety, cost, and efficiency. Additionally, planning an 
inspection route for infrastructure over a broad area proves to be an enormous and 
complex task. Automated inspections face further challenges due to the difficulty in 
determining a unique inspection route. The sheer number of potential routes makes this 
problem particularly complex. Even when attempting to determine a route that visits 𝑛 
locations, a vast number of possible paths must be considered. Therefore, research has 
been conducted to derive routes using methods such as approximate solutions (e.g., 
greedy algorithms, local search methods) and exact solutions. However, numerous 
conditions must be considered for drone flights, including building shapes, the presence 
of obstacles, site conditions, the characteristics of individual drones, and weather 
conditions such as wind and rain. Developing an algorithm that can adapt to all these 
changing factors is impractical. Hence, this study focuses on reinforcement learning, 
which has the capability to learn autonomously according to various conditions. 
Reinforcement learning allows an agent to explore data and learn independently, 
enabling it to gain rich representations through exposure to diverse patterns. 
Additionally, inference models trained using reinforcement learning offer high 
generalization performance, allowing them to adapt to a wide range of conditions. 

1.2. RESEARCH OBJECTIVE 
This study investigated the generation of inspection routes using reinforcement 
learning. This study focused on large-scale and complex scenarios, such as the 
inspection of building exteriors during disasters, routine infrastructure inspec-
tions, and citywide building assessments. The aim was to create a flight path for 
drones equipped with cameras, and simulations were conducted within a game 
engine environment. As previously mentioned, route planning is complex owing 
to the vast number of possible routes. Therefore, a reinforcement learning ap-
proach, where an agent autonomously explores and learns, was adopted to gen-
erate inspection routes. 

1.3.  PREVIOUS RESEARCH 
During wall inspection using drones, path planning traditionally relies on rule-based 
approaches. For instance, Xu et al. (2024), Zhang et al. (2024) and Zhou et al. (2021) 
demonstrated that a rule-based approach using heterogeneous drones facilitates 
efficient inspection of complex structures, such as Marina Bay Sands. However, when 
considering the inspection of building surfaces across an entire city, rule-based path 
planning approaches encounter limitations. Recent studies have investigated path 
planning using deep reinforcement learning to address these challenges (Muñoz, 2019; 
Tylkin, 2022). However, applications specifically focusing on wall inspections using 
reinforcement learning have not yet been reported. Therefore, this study aimed to 
explore the potential of reinforcement learning for inspections by focussing on the  
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following two objectives and novel contributions: 
● Assess the feasibility of inspection path planning using reinforcement learning. 

● If feasible, clarify the optimal conditions and design parameters required during 
training. 

2. Research Overview 
The workflow of the analytical method is illustrated in Figure 1. A reinforcement 
learning environment was developed using Anaconda and the ML-Agents Toolkit 
from Unity. After setting up the environment, parameters and other conditions in Unity 
were adjusted to follow the reinforcement-learning process. Flight simulations were 
conducted using Unity to evaluate the performance of the trained inference model. 

Figure 1. Flowchart of analytical method 

2.1. RESEARCH OBJECTIVE 
Reinforcement learning (Sutton, 1998) is a machine-learning method that enables 
learning of the optimal policy to take the best possible action based on the state of the 
environment and receive rewards. Figure 2 presents an overview of the reinforcement-
learning process, which involves an iterative cycle of the following steps: 

(1) The agent acquires the current state at each time step 𝑡. 
(2) The agent selects an action based on the acquired state. 
(3) A reward is assigned based on the performed action. 

This iterative process continues as the agent seeks to optimise its long-term reward. 
 
 
 
 
 
 
 

Figure 2. Learning overview 
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2.2. TRAINING ENVIRONMENT 
An overview of the constructed training environment and the system versions used are 
shown in Figure 3. The design of states, actions, and rewards, as well as training and 
result verification, were conducted using Unity (version 2020.3.48f1). Reinforcement 
learning was implemented using the machine learning toolkit of Unity, Unity Machine 
Learning Agents (ML-Agents v2.0.1) (Juliani, 2018). The ML-Agents toolkit was built 
using the PyTorch library and Python 3.8.13. Training was performed using a graphics 
processing unit (GPU). The computer used in this study had a Core i7 8700 K 
processor, an NVIDIA GeForce RTX 2070 SUPER GPU, and a 32 GB DDR4 RAM. 
The off-policy proximal policy optimisation (PPO) method (Schulman, 2017) was 
employed for the reinforcement-learning algorithm. Although PPO has a low sample 
efficiency and requires numerous training steps, it is stable during training. 
 
 
 
 
 
 
 
 
 
 

Figure 3. Overview of environmental setup 

2.3. WALL INSPECTION ENVIRONMENT 
A drone-based wall-inspection environment was created using the Unity game engine. 
The movement of the drone and wall structures were simplified to streamline the 
training. The drone was represented as a cube and programmed to move in six 
directions: up, down, left, right, forward, and backward, with rotational capabilities to 
turn left and right. The wall was modelled as a single surface composed of 40 cells 
(Figure 4), with each cell measuring w = 1 m × h = 2 m. Subsequently, the surface of 
the entire wall was 𝑤 = 10 m × ℎ = 8 m, whereas the entire volume of the structure was 𝑤 = 10 m × 𝑑 = 10 m × ℎ = 8 m. This structure was positioned in a three-dimensional 
space for training. 

Wall inspection was deemed successful when the following conditions were 
satisfied: (1) the drone faced the wall cell directly, and (2) the distance between the 
drone and the cell was within a specific threshold. These criteria were established based 
on advancements in camera technology, as visual inspections can be effectively 
performed if a camera captures a clear image of the wall surface. In the simulation 
environment, colours of the inspected wall sections were changed to indicate 
completion, and the flight path of the drone was displayed in purple (Figure 4). 
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 Figure 4. Left: Building model in Unity Right: Overview of flight simulation 

3. Design Method 
Reinforcement learning was applied to a group of 60 buildings arranged in a 340 m × 
390 m field (Figures 6 and 7). Adjustments were made to the rewards, observations, 
environmental settings, and hyperparameters to ensure that all wall inspections were 
completed. The details of the design parameters are presented in Table 1. 

Table 1. Detailed design for reinforcement learning（※distance: Refers to the distance between the 
previously and currently inspected cell, with a minimum value of 1.0. ※Normalise the dot product, 

as shown in Figure 10） 

3.1. OBSERVATION DESIGN 
In the observation design (information accessible to the drone for training), the drone 
gathers data regarding its own status and that of the wall. The includes recording its 
position coordinates and rotation angles. The position of the wall was detected using 
the Raycast component in Unity. When a ray (light beam) emitted from the drone 
contacted a wall, its distance to the wall was recorded. Additionally, the drone acquired 
the distance and vector of the target cell. The cell to be observed was defined as the cell 
closest to the last inspected position of the drone (Figure 5), and the target cell for 

Observation Drone’s xyz coordination 3 observations 
Drone's y-axis rotation angle 1 observations 
Distance and vector between the 
drone and the cell 

3 observations 

RayCast Observation 15 rays 
Reward When a horizontal wall is de-

tected 
1/ሺ10ଶ ൈ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒※ሻ 

When other walls are detected 1/ሺ10ଷ ൈ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒※ሻ 
When all walls have been de-
tected 

1.0 

Out of range / per step െ10ିଷ・െ 10ି 
When moving toward a distant 
target cell ሺ�⃗�・𝑏ሬ⃗ ሻ※ ൈ 10ି 
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observation was determined through training using the following three methods:  
● Method A: The cell closest to the current position of the drone is observed at each 

time step.  

● Method B: The cell closest to the last inspected cell is observed until inspection.  

● Method C: The cell closest to the position of the drone is observed after each cell 
inspection.  

Figure 5. Method for obtaining wall information 

Among these methods, Method C yielded the best results; therefore, this approach was 
adopted to determine the target cell for observation. 

3.2. REWARD DESIGN 
Positive rewards were given when a cell was inspected and upon the completion of all 
wall inspections. Negative rewards were assigned when the drone moved outside the 
designated area or over time at regular intervals. In addition, rewards were structured 
to encourage efficient inspection by increasing the number of cells adjacent to or close 
to previously inspected cells. This reward structure, based on previous trials, was 
designed to improve the learning efficiency and optimise the inspection paths. Figure 
9 shows the conditions and amounts of reward. 
The episode concluded either when all wall inspections were completed or when the 
drone moved out of bounds, and the drone was reset to its initial position. The flight 
area and starting point are shown in Figure 6. Because the drone did not naturally 
proceed to the next building after completing an inspection, rewards were designed to 
encourage movement toward subsequent buildings. The amount of reward was 
adjusted based on the dot product of the vector representing the movement of the drone 
(𝑎) and vector from the drone to the target cell (𝑏) (Figure 7). Consequently, rewards 
increased when the drone moved directly toward the target cell. 

Figure 6. Amount of reward: Left: large; Centre: medium; Right: small 
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Figure 7. Reward based on the dot product (※ The dot product is normalised, and  
a constant 𝛼 (10–6) is applied to adjust the amount of reward) 

3.3. HYPERPARAMETER DESIGN 
The details of the hyperparameters used in reinforcement learning are listed in Table 2. 
The beta parameter (entropy, which controls the randomness of action selection) was 
set to 1/100. When the beta value was set lower (beta = 1/5000), learning stalled, 
showing no progress. 

Table 2. Hyperparameters set during the training process 

 

3.4. INSPECTION RESTRICTIONS PER BUILDING 
The system was designed to prevent the inspection of the next building until all wall 
inspections of the current building were completed. Immediately after the inspection 
of the building was completed, the drone was permitted to inspect the nearest adjacent 
building. In the initial designs, where the drone could move to the next building without 
completing inspections, the learning process stalled as the drone engaged in repetitive 
movements between buildings rather than focused inspections. Thus, these restrictions 
were implemented to maintain efficient learning progress. 

4. Route Generation for Inspecting 60 Buildings 

4.1. CURRICULUM LEARNING 
Curriculum learning was used in this study. This approach gradually increases the task 
difficulty to facilitate the acquisition of basic behaviours, eventually enabling the agent 
to tackle more complex tasks. In this study, the task difficulty was incrementally 

Learning Hyperparameter 
bach_size : 128 
buffe_size : 2048 
learning_rate : 0.0003 
beta : 0.01 
epsilon : 0.2 
lambd : 0.95 
num_epoch 
learning_rate_schedule : liner 

Network_settings 
normalize : false 
hidden_units : 256 
num_layers : 2 
vis_encode_type : simple 

Reward_signals 
gamma : 0.99 
strength : 1.0 
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increased by increasing the number of buildings from three walls to 1, 2, 3, 10, 20, 30, 
and 60 buildings. The training process consisted of 1.8 billion steps. Figure 8 shows 
the environmental settings, coverage area, and training steps for each stage. 

Figure 8.  Curriculum-learning process 

4.2. TRAINING RESULTS 
Figure 9 and Figure 10 show the progressions of the average cumulative rewards, 
episode lengths, and average loss of the value function during the training process. One 
of the flight paths of the drone during training is shown in Figure 11. The drone 
successfully completed inspections of all the building walls. The average flight distance 
required to complete the inspections was 18,392.1 m, based on 10 simulation flights. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Progression of value loss and steps of average cumulative rewards 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Progression of cumulative rewards and episode length of steps 
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Figure 11.  Inspection path of drone after training 

 

4.3. ROUTE GENERATION USING A COMBINATION OF SIMULATED 
ANNEALING 
For additional evaluation, route generation was conducted by combining reinforcement 
learning with simulated annealing, a search algorithm used to solve global optimisation 
problems. An approximate solution for the shortest inspection route among buildings 
was derived using simulated annealing. After completing the inspection of one 
building, the next building was selected based on the optimised route. A previously 
trained inference model for inspecting 60 buildings was applied without modification. 
Consequently, inspections of all 60 buildings were completed following the optimised 
route. The average flight distance over 10 simulation flights was 18,444.8 m. 
Compared to using only reinforcement learning, this approach resulted in a slight 
increase in flight distance, with a ratio of 1.002865 (Figure 12). However, challenges 
still exist, such as the suboptimal inspection route distance after training and lengthy 
training time required to inspect subsequent buildings.  

Figure 12. Comparison of path and flight distance using simulated annealing 
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5. Conclusion 
In this study, a method for generating drone-based wall inspection routes was evaluated 
using reinforcement learning. The results demonstrated that all wall surfaces of the 60 
buildings could be successfully inspected through reinforcement learning. Moreover, 
the results demonstrated that reinforcement learning can be used to perform inspections 
on a scale comparable to that of past rule-based methods. This finding provides an 
effective solution for automating large-scale building inspections, potentially 
catalysing further research on agent-based models. Future studies should focus on 
enhancing reinforcement learning for more complex inspection targets, designing a 
learning environment to improve efficiency, and developing methods to reduce 
training time. 
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